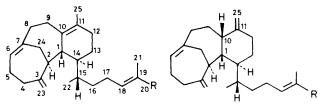
A New Class of Sesterterpenoids from the Secretion of *Ceroplastes rubens* (Coccidae)

Michael S. Tempesta, Takashi Iwashita, Fumiko Miyamoto, Kazuo Yoshihara, and Yoko Naya* Suntory Institute for Bioorganic Research, Shimamoto-cho, Mishima-gun, Osaka 618, Japan

Five novel sesterterpenoids (1)—(5) from the secretion of the scale insect *Ceroplastes rubens* Maskell have been isolated and characterized to be the first representatives of series having the tricyclo[8.4.1.0]pentadecane and tetracyclo[9.4.0.0.0]pentadecane skeletons.


We report the isolation^{1,2} and structure of five novel sesterterpenoids from the secretion of the scale insect *C. rubens*: cerorubenic acid-I (1), cerorubenic acid-II (2), cerorubenic acid-III (3), cerorubenol-I (4), and cerorubenol-II (5). The sesterterpenoids (1)---(5) are the first representatives of series having the tricyclo[8.4.1.0]pentadecane and tetracyclo-[9.4.0.0.0]pentadecane skeletons. These compounds have been shown to act,³ in part, as kairomones, responsible for the ovipositional behaviour of the parasitic wasp *Anicetus beneficus* (Encrytidae) towards *C. rubens*.⁴

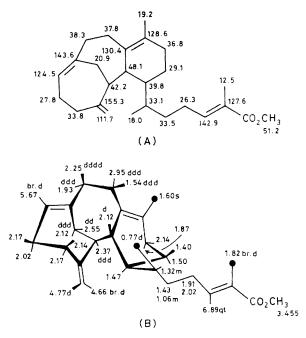
C. rubens was collected in Osaka Prefecture (1979) and Kyushu District (1981–1982), where they were found as deep red hemispheres about 3 mm in diameter on citrus trees. Compounds (1)–(5) were isolated by $CHCl_3$ extraction of the insect bodies, filtration, concentration, addition of acetone, removal of acetone insoluble material, KOH extraction,

neutralization, methylation, SiO_2 chromatography, and successive AgNO₃-SiO₂ flash chromatography of the neutral-acidic fractions.

Cerorubenic acid-I (1), an oil, was isolated as its oily methyl ester $C_{26}H_{38}O_2$ (m/z 382.2487, M^+ , calc. 382.2869); $[\alpha]_D^{24}$ -67.8° (c, 0.54, CHCl₃); ν_{max} (neat) 1716 cm⁻¹ (conjugated ester). Its mass spectrum indicated loss of the side chain (m/z227, $M^+ - C_9H_{15}O_2$). The n.m.r. data shown in (A) and (B) were consistent with structure (1), assignments being based on heteronuclear decoupling, lanthanide induced shifts, and comparison within this series. The upfield shift (δ 20.9 p.p.m., t) of the bridging C-24† can be explained by the shielding effect of the 10-ene system. Extensive {¹H-¹H} difference decoupling

[†] The numbering system is based on that of the presumed biogenetic precursor geranylfarnesyl cation.

 $R=CO_2H$, cerorubenic acid-I (1) $R=CO_2H$, cerorubenic acid-II (2) $R=CH_2OH$, cerorubenol-I (4) $R=CH_2OH$, cerorubenol-II (5)


R=CO₂H, cerorubenic acid-III (3)

and 2-dimensional J correlation allowed all protons to be assigned and many of the J values to be determined. The relative configurations were established by nuclear Overhauser enhancement (n.O.e.) difference spectra and J values.[‡]

The acid (1) was slowly oxidized in the air to give epoxycerorubenic acid, $6,7-\alpha$ -epoxy-(1), $C_{26}H_{38}O_3$ (m/z 398.2837, M^+ , calc. 398.2863). The replacement of the olefinic peaks at δ 143.6 (s, C-7) and 124.5 p.p.m. (d, C-6) by peaks at δ 60.7 (d) and 61.2 p.p.m. (s) in the ¹³C n.m.r. spectrum, together with the lack of an OH group (i.r.) indicated the presence of an epoxide. The 6-H n.m.r. signal (δ 2.66, t, J 7 Hz) indicated that the epoxide had the α -stereochemistry. This facile oxidation probably reflects the inherent strain in the [8.4.1.0] tricyclic ring system.

Cerorubenic acid-II (2) was isolated as its methyl ester, oil, $C_{26}H_{38}O_2$ (m/z 382.2832, M^+ , calc. 382.2869); $[\alpha]_D^{24}$ -83.8° (c, 0.73, CHCl₃), ν_{max} 1712 cm⁻¹ (conjugated ester). The ¹³C n.m.r. spectrum indicated that the 10-ene observed in (1) had been replaced by an exocyclic 11,25-ene in (2). The β configuration of 10-H, *i.e.*, a *cis*-ring junction, was established by the 4% n.O.e. at 1-H upon irradiation of 10-H (δ 2.60). Treatment of (2) with *p*-MeC₆H₄SO₃H-MeOH at 40—50 °C, for 2 h yielded (1).

Cerorubenic acid-III (3) was also isolated as its methyl ester, an oil, $C_{2e}H_{38}O_2$ (m/z 382.2875, M^+ , calc. 382.2869); $[\alpha]_{10}^{24}$ -60° (c, 0.001, CHCl₃) with ν_{max} 1715 cm⁻¹ (conjugated ester). Its mass spectrum was similar to those of (1) and (2), except for intensity differences. The presence of six olefinic carbon atoms (13 C n.m.r.) indicated that (3) was tetracyclic. The upfield shifts of peaks at δ 24.9 (d, C-2) and 20.7 p.p.m. (s, C-3) suggested a cyclopropyl moiety. In comparison with

N.m.r. assignments (C_6D_6 ; δ values) of cerorubenic acid-I methyl ester (A), ¹³C; (B), ¹H. Black circles denote methyl groups. Coupling constants (*J*/Hz): 1-H 9; 2-H 1, 6, 9; 8-H 6, 13, 13; 8'-H 1, 2, 6, 13; 9-H 6, 13, 13; 9'-H 2, 6, 13; 15-H 2.5, 7, 8; 18-H 1.5, 8.5; 21-H 1.5; 22-H 7; 24-H 2, 6, 13; 24'-H 1, 13.

(2), one exocyclic double bond has been lost and a new Me group has appeared; the cyclopropyl ring should thus involve either C-3 or C-11. In the ¹H n.m.r. spectrum, the presence of two upfield coupled protons, δ 0.75 (t, J 9 Hz, 2-H) and 0.95 (d, J 9 Hz, 24-H), also supported the presence of a cyclopropyl system. Finally, 2-dimensional J correlation, difference decoupling, and comparisons of J values with those of (1) and (2) established the structure of (3). A small allylic long-range coupling (<1 Hz) between 6-H and 24-H could be detected using 2-dimensional J correlation but was not observed by difference decoupling.

Cerorubenols-I (4) and II (5), $C_{25}H_{38}O(m/z 354.2930 \text{ and} 354.2910$, M^+ , calc. 354.2921) were also both oils, $[\alpha]_{D}^{24} - 45.0^{\circ}$ (c, 0.52, CHCl₃), and -98.7° (c, 0.39, CHCl₃) respectively; ν_{max} 3350 cm⁻¹ (OH). Their mass spectra showed peaks due to the loss of the side chain. Their ¹³C n.m.r. spectra indicated that (4) and (5) were closely related to (1) and (2), respectively. LiAlH₄ reduction of the methyl esters of (1) and (2) yielded alcohols identical in all respects with (4) and (5).

We thank Professor Koji Nakanishi for discussions.

Received, 16th June 1983; Com. 798

References

- K. Doi, T. Miura, and O. Sakurai, Abstr. Symposium on the Chemistry of Terpenes, Essential Oils, and Aromatics (TEAC), Chem. Soc. Japan, 1972, vol. 16, p. 53; K. Doi and J. Chiba, *ibid.*, 1974, vol. 18, p. 95; K. Doi, Y. Yachida, H. Kishida, and Y. Itagaki, *ibid.*, 1975, vol. 19, p. 155.
- 2 F. Miyamoto, H. Naoki, and Y. Maya, Abstr. TEAC, Chem. Soc. Japan, 1979, vol. 23, p. 227.
- 3 S. Takahashi, Kyoto University, personal communication.
- 4 T. Noda, C. Kitamura, S. Takahashi, K. Takagi, T. Kashio, and M. Tanaka, *Appl. Entomol. Zool.*, 1982, **3**, 350, and references therein.

[‡] ¹H N.m.r. data were obtained on a Nicolet NT-360 spectrometer with a 1280/293B data system. When 2-H (δ 2.37) was irradiated, a 3.7% n.O.e. was observed with 23-H (δ 4.66), but no n.O.e. was observed with 1-H. This, along with the observed $J_{1,2}$ 9 Hz coupling indicated that 1-H and 2-H were *trans*. The lack of coupling between 1-H and 14-H, corresponding to a dihedral angle of 80–100°, suggested their *trans* relationship. The configuration at C-15 was established noting the 3.7% n.O.e. observed between 22-H (methyl) and 1-H, *and* the small (2.5 Hz) coupling detected between 14-H and 15-H corresponding to a dihedral angle of 60–115°. To confirm the position of the tetra-substituted double bond, 9-H (δ 2.95) was irradiated, when a 3.6% n.O.e.